### Chapter 3: Pair of Linear Equations in Two Variables

Q
##### Pair of linear equations in two variables CBSE NCERT Solutions

Question:

Solve the following pair of linear equations by the elimination method and the substitution method:

(i) x + y = 5, 2x – 3y = 4

(ii) 3x + 4y = 10, 2x – 2y = 2

(iii) 3− 5– 4 = 0, 9= 2+ 7

(iv)

(i) x + y = 5 … (1)

2x – 3y = 4 … (2)

Elimination method:

Multiplying equation (1) by 2, we get

2x + 2y = 10 … (3)

2x − 3y = 4 … (2)

Subtracting equation (2) from (3), we get

5y = 6  =

Putting the value of y in (1), we get

= 5

= 5 −   =

Therefore, x =    and y =

Substitution method:

+ y = 5 … (1)

2x − 3y = 4 … (2)

From equation (1), we get,

= 5 − y

Putting this in equation (2), we get

2 (5 − y) − 3y = 4

10 2y − 3y = 4

5y = 6

Putting the value of y in (1), we get

= 5 −   =

Therefore, x =    and y =

(ii) 3x + 4y = 10… (1)

2x – 2y = 2… (2)

Elimination method:

Multiplying equation (2) by 2, we get

4x − 4y = 4 … (3)

3x + 4y = 10 … (1)

Adding (3) and (1), we get

7x = 14  = 2

Putting the value of x in (1), we get

3 (2) + 4y = 10

4y = 10 – 6 = 4

= 1

Therefore, x = 2 and y = 1

Substitution method:

3x + 4y = 10… (1)

2x − 2y = 2… (2)

From equation (2), we get

2x = 2 + 2y

= 1 + y … (3)

Putting this in equation (1), we get

3 (1 + y) + 4y = 10

3 + 3y + 4y = 10

7y = 7  = 1

Putting the value of y in (3), we get

= 1 + 1 = 2

Therefore, x = 2 and y = 1

(iii) 3− 5– 4 = 0 … (1)

9= 2+ 7… (2)

Elimination method:

Multiplying (1) by 3, we get (3)

9x − 15y – 12 = 0… (3)

9x − 2y – 7 = 0… (2)

Subtracting (2) from (3), we get

− 13y – 5 = 0

− 13y = 5

=

Putting the value of y in (1), we get

Therefore,    and

Substitution Method:

3x − 5y – 4 = 0 … (1)

9x = 2y + 7… (2)

From equation (1), we can say that

3x = 4 + 5y

Putting this in equation (2), we get

9   − 2y = 7

12 + 15y − 2y = 7

13y = −5

Putting the value of y in (1), we get

Therefore ,   and

(iv)

… (1)

… (2)

Elimination method:

Multiplying equation (2) by 2, we get

… (3)

… (1)

Adding (3) and (1), we get

= 2

Putting the value of x in (2), we get

= − 3

Therefore, x = 2 and y = −3

Substitution method:

… (1)

… (2)

From equation (2), we can say that

Putting this in equation (1), we get

5y + 9 = − 6

5y = − 15 = − 3

Putting the value of y in (1), we get

= 2

Therefore, x = 2 and y = −3

#### VIDEO EXPLANATION

Related Questions for Study

CBSE Class 10 Study Material

## Choose EduSaksham® Embrace Better Learning 