### Chapter 3: Pair of Linear Equations in Two Variables

Q
##### Pair of linear equations in two variables CBSE NCERT Solutions

Question:

Which of the following pairs of linear equations has a unique solution, no solution, or infinitely many solutions? In case there is a unique solution, find it by using cross multiplication method.

(i)  x – 3y – 3 = 0

3x – 9y – 2 = 0

(ii) 2x + y = 5

3x + 2y = 8

(iii) 3x − 5y = 20

6x − 10y = 40

(iv) x − 3y – 7 = 0

3x − 3y – 15 = 0

(i) − 3y – 3 = 0

3x − 9y – 2 = 0

We compare equation − 3– 3 = 0 with a1x +b1y + c1 = 0 and 3− 9– 2 = 0 with a2x +b2y + c2 = 0.

We get a1 = 1, b1= -3,  c1 = -3 and a2 = 3, b2 = -9, c2 = -2.

Here      this means that the two lines are parallel.

Therefore, there is no solution for the given equations i.e. it is inconsistent.

(ii) 2x + y = 5

3x + 2y = 8

Comparing equation 2= 5 with a1x + b1y + c1 = 0 and 3+ 2= 8 with a2x + b2y + c2 = 0.

We get a1 = 2, b1= 1,  c1 = -5 and a2 = 3, b2 = 2, c2 = -8

Here     this means that there is a unique solution for the given equations. = 2 and = 1

(iii) 3x − 5y = 20

6x − 10y = 40

Comparing equation 3− 5= 20 with a1x + b1y + c1 = 0 and 6− 10= 40 with a2x + b2y + c2 = 0.

We get a1 = 3, b1= -5,  c1 = -20 and a2 = 6, b2 = -10, c2 = -40

Here,

It means lines coincide with each other.

Hence, there are infinitely many solutions.

(iv) − 3y – 7 = 0

3x − 3y – 15 = 0

Comparing equation − 3– 7 = 0 with a1x + b1y + c1 = 0  and 3− 3– 15 = 0 with a2x + b2y + c2 = 0.

We get a1 = 1, b1= -3,  c1 = -7 and a2 = 3, b2 = -3, c2 = - 15

Here      this means that we have a unique solution for these equations. = 4 and = –1

#### VIDEO EXPLANATION

Related Questions for Study

CBSE Class 10 Study Material

## Choose EduSaksham® Embrace Better Learning 